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Abstract

It is generally assumed that the Rescorla and Wagner (1972) model adequately accommodates the full results of simple cue
competition experiments in humans (e.g. Dickinson et al., 1984), while the Bush and Mosteller (1951) model cannot. We
present simulations that demonstrate this assumption is wrong in at least some circumstances. The Rescorla-Wagner model, as
usually applied, fits the full results of a simple forward cue-competition experiment no better than the Bush-Mosteller model.
Additionally, we present a novel finding, where letting the associative strength of all cues start at an intermediate value (rather
than zero), allows this modified model to provide a better account of the experimental data than the (equivalently modified)
Bush-Mosteller model. This modification also allows the Rescorla-Wagner model to account for a redundancy effect experiment
(Uengoer et al., 2013); something that the unmodified model is not able to do. Furthermore, the modified Rescorla-Wagner
model can accommodate the effect of varying the proportion of trials on which the outcome occurs (i.e. the base rate) on the
redundancy effect (Jones et al., 2019). Interestingly, the initial associative strength of cues varies in line with the outcome base
rate. We propose that this modification provides a simple way of mathematically representing uncertainty about the causal
status of novel cues within the confines of the Rescorla-Wagner model. The theoretical implications of this modification are
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discussed. We also briefly introduce free and open resources to support formal modelling in associative learning.
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1 Introduction

Blocking (Kamin, 1969) is a type of cue competition that
occurs when learning about one cue is apparently restricted
by the simultaneous presence of another cue that has also
been trained separately. For example, if a single cue is fol-
lowed by an outcome (A+), and a separately-encountered
compound containing that cue is followed by the same out-
come (AX+), then learning about X is restricted (N.B. letters
represent cues and + or - represents the presence or absence
of the outcome). In humans, learning is often tested by ask-
ing participants to rate the likelihood of an outcome such
as stomach ache, on the basis of specific cues such as foods
(e.g. Jones et al., 2019). Participants rate blocked cues as a
less likely cause of the outcome than an appropriate control
(e.g. Y following B- BY+ training).

Early models of associative learning were unable to ac-
count for blocking. In particular, the associative learning
model developed by Bush and Mosteller (1951) uses an indi-
vidual prediction error, which means that any change in the
strength of an association between a cue and an outcome is
governed by the size of the error between the outcome that
occurs and the outcome predicted by that cue alone. For
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example, if you predict that a certain type of food is safe
to eat, but you subsequently suffer an allergic reaction after
eating that food, then there will be a large prediction error.
Once you have learned that this type of food is not safe to
eat, there will be no error, and learning will be at asymptote.
According to the Bush-Mosteller model, learning updates as
follows:

AVy = axL(A1-Vy) (1)

In Equation 1, associative strength is denoted by V, where
AV is the change in associative strength for cue X, and V,
is the current associative strength of cue X. The cue salience
is represented by @ and the outcome learning rate is repre-
sented by L. The asymptote of learning is represented by A.
The individual prediction error means that the model cannot
account for blocking, as this effect is driven by the inter-
ference of simultaneously encountered cues. To overcome
this, Rescorla and Wagner (1972) proposed a model with
an overall prediction error, in which any change in associa-
tive strength is governed by the error between the outcome
that occurs and the outcome predicted by all simultaneously
present cues:

AVy = axL(A - XV,) )

The only change is that £Vhas been incorporated as the
overall associative strength of all simultaneously-present
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cues. The model can account for blocking because A takes
up all the available associative strength on the A+ trials,
meaning that there is no available associative strength for X
to acquire on the AX+ trials (assuming learning is at asymp-
tote).

Dickinson et al. (1984) provided one of the first experi-
mental demonstrations of blocking in humans. The Rescorla
and Wagner (1972) model is widely assumed to adequately
explain the full data of such experiments, whilst also provid-
ing a better account than Bush and Mosteller’s (1951) model.
In our first simulation, we conducted a model-fitting proce-
dure on the full data of a simple forward cue competition
blocking experiment (a standard design incorporating block-
ing, a control and filler cues), using both models. It is worth
emphasising that we were exploring the ability of the models
to account for the full set of experimental test cues, rather
than just the blocked and control cues. A sufficiently ade-
quate model should be able to account for a full experiment,
rather than just accounting for an effect, which is only an ex-
tract of an experiment. Neither model provided an adequate
account, with the overall fit of the Rescorla-Wagner model
(to the data) being no better than Bush-Mosteller model.

2 Simulation set 1: Blocking

There are several simple human forward cue-competition
experiments reported in the literature (e.g. Dickinson et
al., 1984; Miller, 1996; Mitchell & Lovibond, 2002), but
none of these datasets have been made openly accessible.
In order to provide an openly accessible dataset, we ran a
standard forward cue competition experiment. The design
included blocking (A+ AX+), a common control (B- BY+),
and filler cues intended to balance the number of cue types
causing either stomach ache or no stomach ache (C- CD-).
For brevity, details of all experiments and simulations are
reported in Supplementary Materials (https://osf.io/7u6re/);
this main article summarises the key findings.

A model fitting process was conducted on the data for all
test stage cues, using standard implementations of the Bush
and Mosteller (1951), and Rescorla and Wagner (1972) mod-
els. Following standard practice, we used gradient-descent
optimisation to find the best-fitting parameters. This pro-
cess involves exploring the parameter space, to minimise
the difference (represented by the sum of squared errors)
between the observed and predicted mean test ratings. It
was necessary for each model to generate ratings consistent
with the outcome-likelihood scale (between 0 and 10) used
at test, rather than just output associative strengths (typi-
cally between 0 and 1). It is generally accepted that there
is not a 1:1 linear relationship between associative strengths
and responding (e.g. Gluck & Bower, 1988), although as
one increases so should the other. A standard solution to
this problem is to use a logistic function to map associative
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strengths onto responses. The equation below is a logistic
function suggested by Gluck and Bower:

1

Pe=100—5v 7%

3)

P, denotes the simulated likelihood rating for cue X, while
V, denotes the associative strength. 8 denotes the bias pa-
rameter for the output associative strength that will result
in a rating of 5 (i.e. the middle of the scale). 6 is a scal-
ing parameter, where higher values mean that the function
relating activation to rating becomes less linear and more
logistic. As outlined , both models also require cue salience
(@) and learning rate (L) as their two standard parameters.
Both of these parameters can have a value between 0 and 1.
Since these values are multiplied in the learning algorithm,
the resulting product is necessarily a value between 0 and
1. For simplicity, these parameters were collapsed into a
single learning rate parameter (G). Therefore, the parameter
space being explored consisted of G, 8 and 6. The value of
each parameter was the same for all cues, since the counter-
balancing of stimuli in the experimental design meant there
was no theoretical basis for expecting these values to differ
between cues. For these simulations, we defined a ‘model’
as a specific combination of processes and representational
assumptions (see Wills & Pothos, 2012). This includes the
representation of stimuli within the model; in this case one
cue per experimental stimulus. Additional cues can be in-
cluded in some representations (e.g. to represent context).
That was not our focus, but these concepts are considered
further in the General Discussion.

2.1 Results from standard model implemen-
tations

The best fitting model was the one that produced the smallest
error between the predicted and observed test ratings. This
was assessed using the mean error for each of the six test cues.
Please note that (unlike the figures) these values are on a
scale of 0- 1 throughout this paper, consistent with associative
strength. The adequacy of fit for each model was additionally
assessed with the R? of the predicted versus observed ratings
(where higher values indicate a better adequacy of fit). Both
the Bush and Mosteller (1951) model, and the Rescorla and
Wagner (1972) model produced a mean error of 0.08 and an
R? of 0.71. To put this latter figure in context, the best formal
models of category learning produce R? values exceeding .95
for standard results in the field, with models that are clearly
and ordinally wrong still sometimes producing R? values
exceeding 0.85 (Nosofsky et al., 1994). On this basis, both
models provide quite poor accounts of this basic blocking
experiment.
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Ficure 1: Predicted versus observed test stage ratings for
unmodified Rescorla & Wagner (RW) model, and Bush &
Mosteller (BM) model, against observed data (Obs), follow-
ing A+/AX+ B-/BY+ C-/CD- training. The violin plot repre-
sents the distribution of the observed data using a method
comparable to Hintze & Nelson (1998). The distribution of
the predicted data is not represented, as it was negligible.

2.2 Modifying the Rescorla-Wagner model

The Rescorla and Wagner (1972) model was originally de-
veloped as an account of non-human animal learning. In
that context, it makes sense for the associative strength of
cues to start at zero, because animals such as rats would not
have learned a response to previously non-encountered cues.
However, in our human blocking experiment, it seems un-
likely that a novel cue would produce an associative strength
of zero, since participants would lack sufficient information
to determine whether or not it is a cause of stomach ache. An
associative strength of zero should result in the production
of low causal ratings, so a more intuitive response would
be for participants to provide novel cues with an interme-
diate rating (for example 5 on a scale running from 0-10),
reflecting their uncertainty about their causal status. This is
supported by Spicer et al. (under review), in an experiment
where a novel cue at test was assigned an intermediate rat-
ing of 4.85 on a 0-10 likelihood scale. Negative associative
strengths are also possible, meaning that a value between 0
and 1 is not strictly intermediate. However, the acquisition
of negative associative strengths to cues (i.e. inhibition) is
difficult to achieve in human predictive learning experiments
using foods as cues (e.g. Zaksaite & Jones, 2019). This is
presumably because eating one food would not typically pre-
vent an allergic reaction from being caused by another food.
Therefore, an associative strength of 0.5 was regarded as an
appropriate representation of participants’ uncertainty.

We conducted our model fitting procedure on the blocking
data a second time, using modified versions of both models,
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in which the initial associative strength of cues was an addi-
tional parameter for optimisation. The concept of non-zero
starting associative strengths is not in itself novel (e.g. Gluck
& Bower, 1988); for example, non-zero initial strengths have
been used to represent pre-training (Miller & Shettleworth,
2007, Dupuis & Dawson, 2013). However, using them as a
representation of human uncertainty is novel. Moreover, the
requirement of intermediate (non-zero) strengths in order for
the Rescorla and Wagner (1972) model to explain a block-
ing experiment more effectively than the Bush and Mosteller
(1951) model would be a novel finding. This concept has
been discussed informally (e.g. Zaksaite, 2017) but not for-
mally simulated. We chose to fully explore the parameter
space, rather than setting this value at 0.5, since if a substan-
tially different value provided the best fit, it would indicate
that our proposal was incorrect.

2.3 Results from modified model implementa-
tions

If the Rescorla and Wagner (1972) model is modified so
that the starting associative strength can be something other
than zero, then it accounts for the results of our block-
ing experiment better than the equivalently modified Bush
and Mosteller (1951) model. The modified Bush-Mosteller
model produced a mean error of 0.04 and an R? of 0.93. The
modified Rescorla-Wagner model produced a mean error of
0.01 and an R? of 1.00, therefore producing less error and a
better adequacy of fit. Whilst the modified Bush-Mosteller
model provided a better fit than the unmodified version (e.g.
it predicted a difference between B and Y, because B declines
in associative strength during the B- trials in Stage 1, while
Y starts at an intermediate strength in Stage 2), the lack of
a summed error term does not allow it to predict blocking.
Figure 2 shows the predicted versus observed test cue ratings
for both models.

As predicted, the best fitting initial associative strengths
were at an intermediate value for both models (0.45 for Bush-
Mosteller and 0.43 for Rescorla-Wagner). This finding is
consistent with the idea that participants assign intermediate
ratings to cues that have an unknown causal status.

3 Simulation set 2: Redundancy effect

Next, we investigated whether our modified Rescorla and
Wagner (1972) model could adequately capture a further
psychological phenomenon that the unmodified model can-
not; the redundancy effect (e.g. Jones & Zaksaite, 2018;
Jones et al., 2019; Uengoer et al., 2013; Uengoer et al.,
2019). The training stage of a redundancy effect design in-
corporates blocking (A+ AX+) and a simple discrimination
(BY+ CY-). Cue Y is referred to as an uncorrelated cue, be-
cause it appears in both a causal and a non-causal compound.
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Ficure 2: Predicted versus observed test stage ratings
for modified Rescorla & Wagner (RW) model, and Bush &
Mosteller (BM) model, against observed data (Obs), following
A+/AX+ B-/BY+ C-/CD- training. The violin plot represents
the distribution of the observed data.

The redundancy effect is the observation of X being rated
as a more likely cause of the outcome than Y. The blocked
cue (X) is typically given intermediate causal ratings at test,
while the uncorrelated cue (Y) is typically given low causal
ratings.

Rather than using a previously published data set, we
collected a set of redundancy effect data (see Supplementary
Materials). This was to provide a more diagnostic test stage
than simply asking participants to provide likelihood ratings
for the five single cues (A, B, C, X, Y). We also asked them
to provide ratings for each of the ten possible compound
cue pairs (that can be produced using these five individual
cues). Importantly, the training participants received was
equivalent to the training used in previous redundancy effect
demonstrations (A+ AX+ BY+ CY-). However, having a
wider set of cues in the test Stage meant that the two models
could be ‘stretched’, by being required to fit a more complex
set of test data.

3.1 Results from modified model implementa-
tions

The modified Rescorla and Wagner (1972) model produced
a mean error of 0.02 and an R? of 0.96, indicating a good
account of the dataset. This was better than the unmodified
model, which produced a mean error of 0.03 and and R?
of 0.83. The modified Bush and Mosteller (1951) model
provided a poor account of the dataset (R?> of 0.63), with
no discernible improvement on the unmodified model (R>
of 0.62); this suggests that our modification is not simply
leading to over-fitting from the inclusion of an additional
parameter. Figure 3 shows the predicted versus observed
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Ficure 3: Predicted versus observed test stage ratings

for modified Rescorla & Wagner (RW) model, and Bush &
Mosteller (BM) model, against observed data (Obs), follow-
ing A+ AX+ BY+ CY- training. The violin plot represents the
distribution of the observed data.

test data for the modified models. The modified Rescorla-
Wagner model captured the redundancy effect, although the
size of the effect was somewhat underestimated. The Bush-
Mosteller model accounted for the redundancy effect itself,
but not the full set of test data.

As with the blocking simulation, the best fitting initial
associative strength was an intermediate value (0.62). It
is notable that the value was slightly higher than for the
blocking data. This could be because the outcome base rate
during training (i.e. the proportion of trial types resulting in
stomach ache versus no stomach ache) was higher. There is
evidence from Jones et al. (2019) that participants’ causal
ratings of cues they are uncertain about are sensitive to the
outcome base rate. If starting associative strength is an
adequate representation of uncertainty about the status of
novel cues, then the best-fitting starting associative strength
should change in line with the outcome base rate. It is
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possible to test this idea by model fitting on a dataset in which
the outcome base rate has been experimentally manipulated.
This was the basis of our final model fitting procedure.

4 Simulation set 3: Redundancy effect
base rate manipulation

A suitable dataset was already available for the final model
fitting procedure. Jones et al. (2019) reported a redundancy
effect experiment, in which the outcome base rate was var-
ied between different groups of human participants. Full
experimental details are available in their paper and a brief
summary is included in our Supplementary Materials. The
test-stage likelihood ratings assigned to blocked cues were
shown to vary in line with the outcome base rate. In both
groups, the redundancy effect was observed, because the
blocked cue (X) was assigned higher ratings than the un-
correlated cue (Y). However, the rating for X was higher in
the high base rate group. The manipulation was achieved by
adding additional cues, so that either 25% or 75% of training
trials resulted in stomach ache. To test the prediction that
starting associative strength is sensitive to experimental base
rate, this parameter was allowed to vary by condition. None
of the other parameters were allowed to vary by condition.
If correct, the modified Rescorla and Wagner (1972) model
should provide a good fit to all the test cues for both groups,
with a higher best-fitting initial associative strength in the
75% group than in the 25% group.

4.1 Results from modified model implementa-
tion

The modified Rescorla and Wagner (1972) model produced
a mean error of 0.03. The R? was 0.98 in both the 25% and
75% base rate groups, indicating a good fit. As predicted, the
best fitting initial associative strength was higher in the high
base rate group (0.51) than in the low base rate group (0.39).
Our initial associative strength parameter appears to provide
one reasonable way of representing participants’ uncertainty
about the causal status of novel cues. Of course, real partici-
pants, unlike our simulation, need to experience at least a few
trials in order to become sensitive to base rate. Thus, using
initial starting weights to model the effects of outcome base
rate is necessarily a simplification of the mental operations
involved. Figure 4 shows the predicted versus observed test
stage ratings for the 25% and 75% groups. The modified
Rescorla-Wagner model was able to capture the redundancy
effect in both conditions. It also captured the labile nature
of blocked cue X, although the effect of the base rate on X
is slightly underestimated.
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Ficure 4: Predicted versus observed test stage ratings for
modified Rescorla-Wagner (RW) model, against observed
data (Obs), fitting to the high (h) and low (l) base rate groups,
following A+ AX+ BY+ CY- training (intermixed with additional
cues used to manipulate the base rate). The violin plot rep-
resents the distribution of the observed data.

5 General Discussion

5.1 Summary of findings

Contrary to intuition, the unmodified Rescorla and Wagner
(1972) model provides no better an account of a standard
forward cue-competition blocking experiment than the Bush
and Mosteller (1951) model. However, if the former is modi-
fied, such that the initial associative strength of cues can be an
intermediate value, then it does provide a better account than
the equivalently modified Bush-Mosteller model. While the
Rescorla-Wagner model can explain basic cue competition,
it needs modification to be able fit the full experimental re-
sults; and can then do so almost perfectly. The modified
Rescorla-Wagner model is also able to adequately account
for the redundancy effect (e.g. Uengoer et al, 2013), which
the unmodified model cannot. Additionally, the initial as-
sociative strength of the simulated cues was shown to vary
with the outcome base rate, supporting the suggestion that
intermediate initial associative strengths can be used to rep-
resent uncertainty about novel cues. This is consistent with
the experimental findings of Jones et al. (2019), in that the
likelihood ratings assigned to cues with an uncertain causal
status are influenced by the outcome base rate. The best
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fitting initial associative strength may also be influenced by
the range of plausible associative strengths within specific
experimental scenarios. The experiments in this paper all
used a food allergy scenario, in which inhibition was un-
likely, bounding plausible associative strengths between O
and 1. However, in a scenario where inhibition is possible,
associative strengths could range from -1 to +1, making O
the intermediate value. This could be tested with a modified
scenario (e.g. pharmaceutical drugs as cues), and a design
with some cues explicitly trained as inhibitors.

5.2 Fitting the full results

We have taken the position in this article that it is important
to fit the full results of an experiment, rather than a hand-
selected subset of cues. One might argue that this approach
could lead to trivial features of the experiment becoming
crucial in model comparison. However, it seems to us that a
cue cannot be both theoretically trivial and crucial in model
comparison. For example, a cue might be theoretically triv-
ial in the sense that all models inevitably predict responding
to that cue correctly. If that is the case, then this cue cannot
affect which of two competing models best fits the data —
inclusion of the trivial cue cannot change the winner of the
contest. Conversely, a cue might affect the outcome of a
model comparison to the extent that different models make
different predictions about it. Such a cue is of theoretical
importance, as it allows us to distinguish between different
models. One might argue that experiments sometimes in-
clude cues that the models were not intended to explain, and
thus including those cues in a model comparison is unfair.
In such cases, it seems to us that the onus is on the propo-
nents of the models to specify which sub-components of an
experiment the model should not be expected to explain.

5.3 Other accounts

Vogel and Wagner (2016) suggested an alternative approach
using the Rescorla and Wagner (1972) model that also ac-
commodates the redundancy effect. In their approach, com-
mon elements are added to the stimulus representation.
While this approach has been shown to accommodate the
basic redundancy effect, there is evidence that it cannot ad-
equately account for the effect of varying the outcome base
rate on the redundancy effect (Jones et al., 2019). Never-
theless, further investigation of both approaches, across a
range of phenomena, would be a fruitful direction for future
research. The importance of making broad relative ade-
quacy comparisons of models has been previously empha-
sised within the literature (Wills & Pothos, 2012; Wills et al.,
2017). Further research could also investigate a role for con-
text in explaining the data (e.g. Bouton, 2010). Both minor
experimental variations (e.g. different types of control used
for blocking), and more substantially different designs, might
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produce different model comparison results. It would also
be useful to know whether other associative models could
account for these results (e.g. Gershman, 2015; Kokkola et
al., 2019; McLaren & Mackintosh, 2000, 2002; Schmajuk et
al., 1996; Wagner, 1981); with or without modifications to
the initial associative strengths.

5.4 Extended test sets

Instead of model fitting to a redundancy effect dataset only
incorporating five single cues at test, we used an expanded
set of test cues (Simulation Set 2). Given the high adequacy
of fit (R? value 0.96) observed for the modified Rescorla and
Wagner (1972) model, a further fitting procedure conducted
on a dataset incorporating only five single test cues could not
produce a fit any worse than this. Whilst there is some scope
for the Bush and Mosteller (1951) model to produce a better
fit with fewer test cues, the best this could result in is both
models producing a comparably good fit as each other. In this
scenario, the modified Rescorla-Wagner model would still
provide the best account across the phenomena considered
in this paper. We suggest that future predictive learning
experiments should incorporate extended test sets, since this
may provide a more diagnostic test of the relative adequacy
of models. We welcome further debate and discussion of
this suggestion.

5.5 Open science for formal models

Our simulations also demonstrate the value of thoroughly
investigating the parameter space of formal models. For-
mal simulations are becoming more common in the study
of human predictive learning, but one possible barrier is the
apparent lack of a common open framework, in which mod-
els, phenomena and simulations can be easily assessed and
compared. However, options are available, such as ALTSim
(Thorwart et al. 2009). ALTSim does not allow for param-
eter space optimisation, but it does allow initial associative
strengths to be set to values other than zero. The model im-
plementations reported in the current paper used the free and
open source package catlearn (Wills et al., 2020), which is
available to download in the open-source R environment (R
Core Team, 2021). catlearn includes a number of model im-
plementations, including Rescorla and Wagner (1972), Bush
and Mosteller (1951), EXIT (Kruschke, 2001), and COVIS
(Ashby et al., 1998). It is an extensible framework to which
more models can be added.

5.6 Conclusion

Our simulations show that intermediate starting associative
strengths are needed for the Rescorla and Wagner (1972)
model to fit the results of a simple forward cue competition
experiment better than the Bush and Mosteller (1951) model.
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Contrary to intuition, both models perform equally poorly
in the absence of this change. Furthermore, this simple
change allows the Rescorla-Wagner model to account for
both the redundancy effect, and the effect of base rate on the
redundancy effect.

Author contributions

SGS (lead author): Co-contributor to the rationale, de-
sign of the experiments, and theoretical basis of the sim-
ulations. Programmed the simulations and experiments.
Co-programmed the model implementations. Collected and
analysed the data. Wrote up the simulations and experiments.
AJW: Co-contributor to the rationale, design of the exper-
iments, and theoretical basis of the simulations. Consulted
on analysis and write up of simulations and experiments.
PMJ: Contributed to rationale, interpretation and write up.
CJM: Contributed to interpretation and write up. LD: Co-
programmed the model implementations.

References

Ashby, F. G., Alfonso-Reese, L. A., & Waldron, E. M.
(1998). A neuropsychological theory of multiple sys-
tems in category learning. Psychological Review, 105(3),
442-481. https://doi.org/10.1037/0033-295x.105.3.442

Bouton, M. E. (2010). The multiple forms of "context" in
associative learning theory. In B. Mesquita, L. F. Barrett,
& E. R. Smith (Eds.), The mind in context (p. 233-258).
Guilford Press. http://doi.org/10.1101/1m.493707

Bush, R. R., & Mosteller, F. (1951). A mathematical model
for simple learning. Psychological Review, 58, 313-323.
https://doi.org/10.1007/978-0-387-44956-2_12

Dickinson, A., Shanks, D., & Evenden, J. (1984). Judge-
ment of act-outcome contingency: The role of selec-
tive attribution. The Quarterly Journal of Experimen-
tal Psychology, 36(1), 29-50. https://doi.org/10.1080/
14640748408401502

Dupuis, B., & Dawson, M. R. (2013). Differentiating mod-
els of associative learning: Reorientation, supercondi-
tioning, and the role of inhibition. Journal of Experimen-
tal Psychology: Animal Behavior Processes, 39(3), 273.
https://doi.org/10.1037/a0032174

Gershman, S. J. (2015). A unifying probabilistic view of as-
sociative learning. PLoS Computational Biology, 11(11).
https://doi.org/10.1371/journal.pcbi.1004567

Gluck, M. A., & Bower, G. H. (1988). From conditioning to
category learning: an adaptive network model. Journal
of Experimental Psychology: General, 117(3), 227-247.
https://doi.org/10.1037/0096-3445.117.3.227

Jones, P. M., & Zaksaite, T. (2018). The redundancy effect
in human causal learning: no evidence for changes in
selective attention. Quarterly Journal of Experimental

REPRESENTING UNCERTAINTY 20

Psychology, 71(8), 1748-1760. https://doi.org/10.1080/
17470218.2017.1350868

Jones, P. M., Zaksaite, T., & Mitchell, C. J. (2019).
Uncertainty and blocking in human causal learning.
Journal of Experimental Psychology: Animal Learning
and Cognition, 45(1), 111-124. https://doi.org/10.1037/
xan0000185

Kamin, L. J. (1969). Selective association and conditioning.
In N. J. Mackintosh & W. K. Honig (Eds.), Fundamental
Issues in Associative Learning (pp. 42-64). Halifax,
Canada: Dalhousie University Press.

Kokkola, N. H., Mondragén, E., & Alonso, E. (2019). A
double error dynamic asymptote model of associative
learning. Psychological Review, 126(4), 506. https:
//doi.org/10.1101/210674d

Kruschke, J. K. (2001). Toward a unified model of attention
in associative learning. Journal of Mathematical Psychol-
ogy, 45(6), 812-863. https://doi.org/10.1006/jmps.2000.
1354

McLaren, I. P. L., & Mackintosh, N. J. (2000). An elemental
model of associative learning: I. Latent inhibition and
perceptual learning. Animal Learning & Behavior, 28(3),
211-246. https://doi.org/10.3758/BF03200258

McLaren, 1. P. L., & Mackintosh, N. J. (2002). Associative
learning and elemental representation: II. Generalization
and discrimination. Animal Learning & Behavior, 30(3),
177-200. https://doi.org/10.3758/BF03192828

Miller, R. R., & Matute, H. (1996). Biological significance
in forward and backward blocking: Resolution of a dis-
crepancy between animal conditioning and human causal
judgment. Journal of Experimental Psychology: General,
125(4),370-386. https://doi.org/10.1037/0096-3445.125.
4.370

Miller, N. Y., & Shettleworth, S. J. (2007). Learning about
environmental geometry: An associative model. Jour-
nal of Experimental Psychology: Animal Behavior Pro-
cesses, 33(3), 191-212. https://doi.org/10.1037/0097-
7403.33.3.191

Mitchell, C. J., & Lovibond, P. F. (2002). Backward and
forward blocking in human electrodermal conditioning:
Blocking requires an assumption of outcome additivity.
Quarterly Journal of Experimental Psychology, 55B(4),
311-329. https://doi.org/10.1080/02724990244000025

Nosofsky, R. M., Gluck, M. A., Palmeri, T. J., McKinley,
S. C., & Glauthier, P. (1994). Comparing modes of rule-
based classification learning: A replication and extension
of Shepard, Hovland, and Jenkins (1961). Memory &
Cognition, 22, 352-369.

R Core Team. (2021). R: A language and environment for
statistical computing. www.r-project.org. (Version 4.0.4)

Rescorla, R. A., and Wagner, A. R. (1972). A theory of
Pavlovian conditioning: Variations in the effectiveness
of reinforcement and nonreinforcement. In A. H. Black
& W. F. Prokasy (Eds.), Classical conditioning II: Cur-


https://doi.org/10.1037/0033-295x.105.3.442
http://doi.org/10.1101/lm.493707
https://doi.org/10.1007/978-0-387-44956-2_12
https://doi.org/10.1080/14640748408401502
https://doi.org/10.1080/14640748408401502
https://doi.org/10.1037/a0032174
https://doi.org/10.1371/journal.pcbi.1004567
https://doi.org/10.1037/0096-3445.117.3.227
https://doi.org/10.1080/17470218.2017.1350868
https://doi.org/10.1080/17470218.2017.1350868
https://doi.org/10.1037/xan0000185
https://doi.org/10.1037/xan0000185
https://doi.org/10.1101/210674d
https://doi.org/10.1101/210674d
https://doi.org/10.1006/jmps.2000.1354
https://doi.org/10.1006/jmps.2000.1354
https://doi.org/10.3758/BF03200258
https://doi.org/10.3758/BF03192828
https://doi.org/10.1037/0096-3445.125.4.370
https://doi.org/10.1037/0096-3445.125.4.370
https://doi.org/10.1037/0097-7403.33.3.191
https://doi.org/10.1037/0097-7403.33.3.191
https://doi.org/10.1037/0097-7403.33.3.191
https://doi.org/10.1080/02724990244000025
http://www.r-project.org/

Open Journal of Experimental Psychology and Neuroscience, 2021, Vol. 1 REPRESENTING UNCERTAINTY 21

rent theory and research (pp. 64-99). New York, NY:
Appleton-Century-Crofts. ISBN: 0390718017.

Schmajuk, N. A., Lam, Y.-W., & Gray, J. A. (1996). Latent
inhibition: A neural network approach. Journal of Exper-
imental Psychology: Animal Behavior Processes, 22(3),
321-349. https://doi.org/10.1037/0097-7403.22.3.321

Shanks, D. R. (1985). Forward and backward block-
ing in human contingency judgement. Quarterly Jour-
nal of Experimental Psychology, 37B(1), 1-21. https:
//doi.org/10.1080/14640748508402082

Spicer, S. G., Mitchell, C. J., Wills, A. J., Blake. K. L.,
and Jones, P. M. (under review). Theory protection: do
humans protect existing associative links? Journal of Ex-
perimental Psychology: Animal Learning and Cognition.

Thorwart, A., Schultheis, H., Kdnig, S. & Lachnit, H. (2009).
ALTSim: A MATLAB simulator for current associative
learning theories. Behavior Research Methods, 41,29-34.
https://doi.org/10.3758/brm.41.1.29

Uengoer, M., Lotz, A., Pearce, J. M., (2013). The fate of
redundant cues in human predictive learning. Journal of
Experimental Psychology: Animal Behaviour Processes,
39(4), 323-333. https://doi.org/10.1037/a0034073

Uengoer, M., Dwyer, D. M., Koenig, S., & Pearce, J.
M. (2019). A test for a difference in the associability
of blocked and uninformative cues in human predictive
learning. Quarterly Journal of Experimental Psychology,
72(2), 222-237.

Wagner, A. R. (1981). SOP: A model of automatic mem-
ory processing in animal behavior. In N. E. Spear &
R.R. Miller. Information Processing in Animals: Mem-
ory Mechanisms (pp. 5-47). ISBN: 9780898591576.

Wills, A. J., & Pothos, E. M. (2012). On the adequacy of
current empirical evaluations of formal models of cat-
egorization. Psychological Bulletin, 138(1), 102-125.
https://doi.org/10.1037/a0025715

Wills, A. J., O’Connell, G., Edmunds, C. E., & Inkster, A.
B. (2017). Progress in modeling through distributed col-
laboration: Concepts, tools and category-learning exam-
ples. Psychology of Learning and Motivation, 66, 79-115.
https://doi.org/10.1016/bs.plm.2016.11.007

Wills, A. J., Dome, L., Edmunds C. E., Honke, G.,
Inkster, A. B., Schlegelmilch, R., & Spicer, S. G. (2020).
catlearn: Formal Psychological Models of Categoriza-
tion and Learning. https://CRAN.R-project.org/package=
catlearn. R package version 0.8.

Zaksaite, G. (2017). The Redundancy Effect in Human
Causal Learning: Attention, Uncertainty, And Inhibition.
Doctoral dissertation, University of Plymouth.

Zaksaite, T., & Jones, P. M. (2019). The redundancy effect is
related to a lack of conditioned inhibition: Evidence from
a task in which excitation and inhibition are symmetrical.
Quarterly Journal of Experimental Psychology, 73(2),
260-278. https://doi.org/10.1177/1747021819878430


https://psycnet.apa.org/doi/10.1037/0097-7403.22.3.321
https://doi.org/10.1080/14640748508402082
https://doi.org/10.1080/14640748508402082
https://doi.org/10.3758/brm.41.1.29
https://doi.org/10.1037/a0034073
https://doi.org/10.1037/a0025715
https://doi.org/10.1016/bs.plm.2016.11.007
https://CRAN.R-project.org/package=catlearn
https://CRAN.R-project.org/package=catlearn
https://doi.org/10.1177/1747021819878430

	Introduction
	Simulation set 1: Blocking
	Results from standard model implementations
	Modifying the Rescorla-Wagner model
	Results from modified model implementations

	Simulation set 2: Redundancy effect
	Results from modified model implementations

	Simulation set 3: Redundancy effect base rate manipulation
	Results from modified model implementation

	General Discussion
	Summary of findings
	Fitting the full results
	Other accounts
	Extended test sets
	Open science for formal models
	Conclusion


